PROBLEMS FOR WEEK-3

PROBLEM 1. Discuss the construction of Riemann sphere, in \mathbb{R}^3 .

PROBLEM 2. Discuss real indefinite integration using using Cauchy residue formula.

(1)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} = \pi,$$

(2) $\int_{-\infty}^{\infty} \frac{e^{ax}}{1+e^{ax}} = \frac{\pi}{\sin(\pi a)}.$

PROBLEM 3. Let f be a function (need not be holomorphic) from \mathbb{C} to the $\mathbb{C} \cup \{\infty\}$. Compute the Laurent series (if exists) representation of f in the following cases at center z_0 and find the annulus of convergence in each case:

(i)
$$f(z) = \frac{1}{1-z}$$
 at $z_0 = 0$.

(ii)
$$f = \frac{1}{1-z}$$
 at $z_0 = 1, 2$

(iii)
$$f(z) = \sqrt{z}$$
 at $z_0 = 0, 1$.

- (iv) $f(z) = \sqrt{z(z-1)}$ at $z_0 = 0, 1$.
- (v) $f = \sin(1/z)$ on $\Omega = \text{at } z_0 = 0, 1/2\pi$.

Analyze the boundary behavior of each of the above function.

PROBLEM 4. Let $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ be a power series centered at z_0 with radius δ . Then show that $f \equiv 0$ on $\mathbb{D}_{\delta}(z_0)$ if and only if $a_n = 0$ for each $n \in \mathbb{N}$.

PROBLEM 5. Let f be holomorphic function on any open set not containing zero then show that:

$$\frac{\partial f}{\partial r} + \frac{i}{r} \frac{\partial f}{\partial \theta} = 0$$

PROBLEM 6. Every very domain (open, connected set) in \mathbb{C} is path connected via piecewise C^1 curve.

PROBLEM 7. Let Ω be a domain in \mathbb{C} and let Z be a discrete subset of Ω without any limit point contained in Ω then show that $\Omega \setminus Z$ is open-connected. Note the similar conclusion does not hold for open connected subsets of \mathbb{R} .

PROBLEM 8. Every non-trivial open subset of \mathbb{C} has a non-empty boundary. Which subsets of a arbitrary topological space has empty boundary?

PROBLEM 9 (Cauchy Kernel). Let γ be a curve is in \mathbb{C} . Let ϕ be a continuous function on γ (i.e. image of γ) then

$$f(z) := \int_{\gamma} \frac{\phi(\zeta)}{\zeta - w} dz, \quad w \in \mathbb{C} \setminus \gamma$$

PROBLEMS FOR WEEK-3

is holomorphic at w.

PROBLEM 10. Show that the unit circle \mathbb{T} is the natural boundary for $\sum_{n=1}^{\infty} z^{n!}$, that is the

above analytic function can not be extended in near any point on $\mathbb T.$

PROBLEM 11. Find examples of an essential singularity one isolated. Discuss singularity as branching point.

PROBLEM 12. Discuss contour integral around a isolated essential singularity of a meromorphic function?

PROBLEM 13. Find singularities of the functions below. And identify the singularities (first tell if isolated or not, and then type):

(1)
$$\frac{a+bz}{c+dz}$$
 where $a, b, c, d \in \mathbb{R}$,
(2) $\sum_{\substack{n=0\\z \le in(z)}}^{\infty} \left(\frac{z}{1+z}\right)^n$, also try to draw the area of convergence of this map,
(3) $\frac{z}{\sin(z)}$,
(4) $\sin(\frac{1}{1-z})$.

PROBLEM 14. How do we visualize complex (meromorphic functions)? We will discuss this in the last tutorial session.